Time To Re-Think Chemotherapy?
Needless to say, I am forever researching the latest and greatest treatments for leukemia. I really feel that I need to continually educate myself about chronic myelogenous leukemia, as I can never count on the twenty minute doctor appointment, that I have every three months, to do so. My appointment typically consists of an overall view of my current vitals, as well as my response to my treatment. I do not think that discussing the newest trends in medicine are high on any doctor's priority list.
So, that is why I am continually educating myself, so that if I find a new treatment or break-through in CML, I will be able to bring it up with my doctor, and hear his opinion. Chances are that he may or may not have even heard, or read the same articles that I find. Sometimes what I bring to him is a total bust, other times, even he is enlightened.
One of my latest finds is the article below; it seems to be a plausible theory, in my opinion. I thought that I would share it with you.
New cell research from Israel suggests the need for a
radically different approach to chemotherapy.
By Karin Kloosterman
The Israeli researchers built a unique “family tree” of
leukemia cells from living cancer patients to understand more about how cancer
cells divide, spread and can outlast chemotherapy treatments.
This world’s-first will likely have profound implications
for the way leukemia and other cancers are treated in the future, the
researchers expect.
In the medical journal Blood, Israeli researchers —
including Noa Chapal-Ilani, Prof. Ehud Shapiro and Dr. Rivka Adar from the
Weizmann Institute of Science and Dr. Liran Shlush from the Technion-Israeli
Institute of Technology — explain that tracing cancer stem cells back to where
they began sheds light on how cancer reappears.
Until now there have been two main theories about why some
cancers return after treatment. The Israeli study results may just put this
debate to bed.
One theory is that chemotherapy can’t kill each and every
cancer cell. The few cancer cells left behind eventually divide out of control
again, leading to a relapse. The other theory is that while chemotherapy may be
good at killing run-of-the-mill cancer cells that divide rapidly, it fails to
vanquish slow-dividing cancer stem cells. This second theory was supported by
the evidence.
It’s all in the family tree. Investigating the genetics of leukemia cells with the aid of
computational biology, the researchers came to a new conclusion: “We know that
in many cases, chemotherapy alone is not able to cure leukemia. Our results
suggest that to completely eliminate it, we must look for a treatment that will
not only eliminate the rapidly dividing cells, but also target the cancer stem
cells that are resistant to conventional treatment,” said Shapiro.
Looking at how genetic information in leukemia cells is
passed on as the cancer divides, they systematically reconstructed the cell
lines – “family trees” of leukemia cells – from two patients to better
understand how the cancer evolves.
One cell lineage was from a patient just after diagnosis.
The other was from a patient who had undergone chemo and was suffering a
relapse. The younger cells were shown at the tips of the branches, and the
original or oldest cells at the base of the tree. Knowing that genetic material
undergoes changes during cell divisions that get passed on to future
generations of cells, the researchers were able to trace and compare mutations
in order to pinpoint where the common ancestor, or the deadliest cancer stem
cells, originated.
The leukemia-cell family tree demonstrated that cancer
returns not from rapidly dividing cells that failed to be obliterated, but from
slow-dividing cancer stem cells that are resistant to the typical kinds of
chemotherapy that target rapidly dividing cells.
According to the researchers, this new finding can help lead
to a new approach aimed at completely rooting out the cancer stem cells. Since
chemotherapy most commonly targets only rapidly dividing cells, this would
represent a paradigm shift in attacking cancer.
Comments
Post a Comment